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Numerical methods for integrating gravitational 3- and 4-body systems are investigated and 
tested. The methods employ multiple-pair regularization schemes for N-body systems 
proposed by Aarseth, Zare, and Heggie, which use the Kustaanheim~StiefeI transformation 
for regularizing 2-body collisions, in conjunction with a number of different time transfor- 
mations between “physical” and “parameter” time. These transformations can be chosen so as 
to make the singularity in the equations of motion, caused by many-body collisions, as mild 
as possible. The various time transformations are tested on both 3- and 4-body systems by 
comparing the numerical with known analytical solutions, and by time reversal of the 
integrations through many-body close encounters. In addition, the technique of Zare and 
Szebehely for stabilizing numerical integrations is investigated for each of the time transfor- 
mations. It is found that when the time transformation is a function of the interparticle 
separations only, stabilization leads to a significant improvement in performance for those 
transformations in which the singularity occuring due to many-body collisions is strong 
(algebraic), but has no decisive effect when the singularity has been softened by an optimal 
choice of transformation. The most satisfactory time transformation appears to be one involv- 
ing the Lagrangian, together with the regularization scheme proposed by Aarseth and Zare. 

Computer programs for binary-single star and binary-binary scattering have been 
developed and are described. They can be used in an extensive project for determining scatter- 
ing cross sections with any of the above methods. They are used here to compare the perfor- 
mance of these methods, for a fixed set of intial conditions, on scattering involving “hard” 
binaries, in which strong resonances can occur. It is found that the outcome of the scattering, 
for example, the identity of the escaping particle(s), can vary with method, thus reflecting the 
inherent instability of the N-body problem. c? 1986 Academic Press. Inc. 

1. INTRODUCTION 

Numerical integrations of the gravitational N-body problem, for simulating the 
evolution of star clusters, have established the important dynamical role of binaries 
formed primordially or as a result of 3-body interactions. Cluster evolution leads to 
high central densities which favour the formation of binary and multiple sub- 
systems. As a result of encounters with other stars, the binary may subsequently be 
disrupted, increase its binding energy, or even exchange one of its components with 
the passing star. If the binding energy of the binary increases as a result of the scat- 
tering, the escaping star gains energy which may then be imparted to the other 
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members of the cluster, or may lead to the escape of the star from the cluster 
altogether. 

The cross sections and reaction rates associated with binary-single star scattering 
have been determined in two ways. An approximate analytic theory has been 
developed by Heggie [ 111 which, because of its generality, has been of considerable 
value as a starting point for computer calculations of cluster evolution (Spitzer and 
Mathieu [30]; Retterer [28]). Detailed numerical integrations of many thousands 
of scattering events have been carried out by Saslaw, Valtonen, and Aarseth [29], 
Hills [12], and several others since, most notably by Hut and Bahcall [14] (with 
references to earlier work) and Hut [ 151. These numerical results provide a 
statistical description of binary-single star scattering in terms of parameters such as 
the size and eccentricity of the initial and final binary orbits, and kinetic energies of 
incoming and escaping stars. 

Binary-binary scattering is likely to be even more frequent than binary-single star 
scattering in the late stages of collapse of a cluster already containing an 
appreciable fraction of binaries. Due to their greater mass than single stars, binaries 
congregate in the dense core of the cluster. An approximate asymptotic theory, 
based on Heggie’s analysis of binary-single star scattering [ 111, was developed by 
Spitzer and Mathieu [30], but they are forced to assume that the binary orbits 
before scattering are of very different size. On the numerical side, some scattering 
experiments have been carried out by various investigators [29,9, 131. Recently 
Mikkola [21-251 has developed a sophisticated program for performing several 
thousand scattering experiments to obtain cross sections and reaction rates, thereby 
providing a statistical description analogous to the binary-single star case men- 
tioned above. The numerical integrations are more time-consuming than for binary- 
single star scattering, and several more outcomes are possible. 

A fundamental difficulty associated with numerical work is the occurence of 
resonance scattering, in which the incoming star or binary is captured and an 
unstable triple system formed. Resonance scattering is most common when the 
kinetic energy of the incoming star is less than the binding energy of the binary (the 
binary is then referred to as being “hard”). The triple system may survive for an 
indefinitely long time before breaking up into a binary plus escaping star. Further- 
more, the triple system may execute complicated orbits which may result in several 
very close encounters between the members. The occurence of the l/r* singularity in 
the gravitational force can lead to loss of numerical accuracy or stability, unless 
suitably small step-sizes are chosen: this may lead to excessively large numbers of 
steps when integrating an orbit. Several regularization techniques have been 
proposed to remove this singularity and provide equations which are regular with 
respect to collisions between pairs of particles [S, 10, 351. Two-body regularization 
techniques using the Kustaanheimo-Stiefel (KS) transformation [ 161 have been 
very successful in overcoming these numerical difftculties [ l-3,27]. 

In view of the difficulties associated with multiple close encounters occuring dur- 
ing resonance scattering (in both 3- and 4-body systems), a regularizing transfor- 
mation is desirable. ‘The aim of this paper is to examine a number of time- 



SIMULATION OF SCATTERING 197 

smoothing techniques and regularization, based on the KS-transformation, for 3- 
and 4-body systems, and to compare them as to efficiency and accuracy in 
numerical integration. These methods will also be compared with methods employ- 
ing the classical equations of motion with the l/r2 singularity [14, 15, 371. In Sec- 
tion 2, a number of regularizing transformations are proposed, based on the mul- 
tiple pair-regularization methods developed by Aarseth and Zare [S], Zare [35], 
and Heggie [lo]. Section 3 describes numerical testing procedures, involving time- 
reversal tests on critical encounters and comparison with known analytic (periodic) 
solutions. The results of numerical tests, for both 3- and 4-body systems and for a 
large class of methods, are also presented in this section. In Section 4, a general 
computer program, similar to Mikkola’s [21], is described for carrying out exten- 
sive binary-single star and binary-binary scattering, in which the initial conditions 
for scattering are automatically generated in the program by random sampling from 
the appropriate distributions. The procedure for terminating a particular orbit 
calculation is also described. The various proposals for regularization and time- 
smoothing are easily inserted into this program. The performance of these methods 
applied to a particular set of scattering initial conditions is compared. Finally, some 
recommendations are made as to the best method for use in generating a large sam- 
ple of data for obtaining scattering cross sections and reaction rates for binary- 
single star and binary-binary scattering. 

2. REGULARIZATION 

Numerical experiments on N-body systems have shown that close encounters 
between particles lead to a serious loss of accuracy of the solutions, as a direct 
result of the l/r* singularity in the inter particle force. The goal of regularization is 
to remove this singularity in the equations by a transformation of the co-ordinates 
followed by a time transformation to a new “regularized” time s. For motion in the 
(x, x2) plane, Levi-Civita [ 181 proposed the parameter representation w = Q, + iQ2 
which maps onto the physical plane z = x1 + ix, by the conformal transformation 
z = IV*. This may be written as 

(;;)=UQ)@ 

where 

is an orthogonal matrix with row/column norm Q: + Q: = ,/m = R. There is 
no corresponding transformation for 3 dimensions involving only 3 parameters 
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(Q,, Q2, Q,); however, Kustaanheimo and Stiefel [ 161 were able to find a 4-dimen- 
sional representation (Q,, Qz, Q3, Q4) 

where L(Q) is the orthogonal matrix 

“g’ -;’ -z3 
4 I 2 

(2.1) 

(2.2) 

\Q4 -Q3 Q2 -Q,/ 

with row/column norm 

Q:+Q;+Q:+:=dm 

= R. (2.3) 

Furthermore the physical momentum (pi, p2, p,) may be transformed to the 4- 
dimensional representation 

(2.4) 

where the fourth component of the right-hand side represents a constant of motion 
which may be chosen to be zero [16]. In keeping with previous notation 
[S, 10, 351, we denote the 3-vectors with non-zero components on the left-hand 
sides of Eqs. (2.1) and (2.4) by q and p, respectively; similarly, their 4-vector 
regularized representations are denoted by Q and P. We may thus discard the 
fourth row of the matrix L; the resulting 3 by 4 matrix is the same as $A ‘(0) in 
[5, 10, 351. 

The KS-transformation forms the basis of the regularization techniques of Aar- 
Seth, Zare, and Heggie for arbitrary 2-body collisions in N-body systems. They may 
be derived by canonical transformations of the dynamical variables qti and pii, 
representing the position vector separating a pair of particles (i, j) and its conjugate 
momentum, respectively, in which the KS-transformation (Eqs. (2.1) and (2.4)) 
appears as one of the canonical transformations. The index ij can range over all 
N(N- 1)/2 possible pairs of particles, as in Heggie’s global scheme, or over a subset 
of k < N(N- 1)/2 pairs, as in the Aarseth-Zare scheme, in which one of the par- 
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titles is chosen as a reference body and regularization of its collision with k other 
particles is performed. 

Before the KS-transformation can be applied, the particle separations and their 
conjugate momenta in physical 3-space must be specified as dynamical variables for 
the system. This involves one or more canonical transformations of the variables 
(q,!, p;) where q,! is the Cartesian co-ordinate vector of the ith particle in some 
inertial frame of reference and p: its conjugate momentum. The corresponding 
Hamiltonian (in the centre-of-mass frame) is given by 

(2.5) 

where R,= 1q: - qJ. In Aarseth and Zare’s schemes, q; becomes an ignorable co- 
ordinate and p,,, = 0. In the new variables, qi represents the separation of particle i 
from particle N, 1 < i K N. Also, k was chosen to be (N - 1 ), so that the separation 
vectors between the reference body and each of the remaining (N- 1) particles was 
regularized. The new Hamiltonian is then given by 

(2.6) 

where pi = mimN/(m, + m,), and pi = pi. 
In Heggie’s scheme, if N> 3 then the total number of separation vectors exceeds 

the number of particles, so that the qii are not independent. Heggie has given a 
method for enlarging the dynamical system to accommodate the qii as dynamical 
variables and obtain their conjugate momenta. From a practical point of view, the 
advantage of this scheme is that all particles are treated on an equal basis, unlike 
the Aarseth-Zare scheme in which it is necessary to change the reference body in 
the course of the integrations so as to regularize an appropriate subset of k inter- 
particle separations at each stage. Its disadvantage is that the number of equations 
is O(N’) instead of O(N) as in the Aarseth-Zare scheme. More specifically, Zare’s 
method for regularization of k particle separations involves 2(3N- 3 + k) 
equations, whereas Heggie’s requires 4N(N- I ) equations (excluding one for the 
time transformation). The cases N= 3 and N = 4 are of particular interest, for 
binary-single star and binary-binary scattering, respectively, and N is small enough 
that the two approaches may still be competitive with regard to efficiency of com- 
putation. 

Thus far, the transformation of physical time has not been specified. For the sim- 
ple 2-body case it is given by 

dt 
-R 

z- 
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where R is the separation. Thus, s plays the role of the eccentric anomaly in 
Keplerian orbital motion. For an N-body system, consider the more general trans- 
formation 

The Hamiltonian in the extended phase space (q, t, p, h) is 

where h is the (constant) energy along a particular orbit and (-h) is conjugate to 
the co-ordinate t. The corresponding Hamiltonian in regularized phase space is 

r*(Q, ~3 P, A) = gf= gCWq(Q), P(Q, W-h1 (2.9) 

and the canonical equations of motion are 

dQ.. i?f* --!!=- 
ds ap, 

dp,= aI-* 
ds JQij 
dt ar* -=-= 
ds 8(-h) g’ 

(2.10) 

(2.11) 

(2.12) 

In order to remove the singularity in (2.10) and (2.11) caused by the collision of 
particles i and j, and to ensure that s remains finite as t approaches a finite limit as 
R,+ 0, the only allowed possibility is that g-R, as R,-+ 0 [6, 321. Thus, a 
possible choice for a time transformation is 

g= J-J Rij (2.13) 
i C j 

[ 10, 353. However, we shall consider the general case given by Eq. (2.8), in which q 
and p are related by the KS-transformation (2.1)-(2.4) to the regularized variables 
Q and P. Although one cannot regularize triple or higher-order collisions, it may 
still be possible to choose g in such a way as to make the singularity caused by the 
simultaneous collision of more than two bodies as “smooth” as possible. By this 
reasoning, one hopes to make the numerical integrations through a multiple close 
encounter as accurate and efficient as possible. Such an approach was employed by 
Heggie [lo] for 3-body systems, and was shown to yield better numerical results 
than the “less optimal” transformation (2.13). 

During approach to a collision, at time t,, of any pair of particles a distance R(t) 
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apart, we have that R- (t, - t)*j3 (see, for example, [ 193). Hence, in general, near a 
multiple collision, we have 

qiim (t, - ty3 

pii”(tc-t)y3 
(2.14) 

and 

H(q, p)m(r,- t)-l’3. (2.15) 

Now suppose that dt/ds = g- (t, - 2)“; then, using Eqs. (2.1)-(2.4) and (2.9)-(2.12) 
we derive 

dQ.. -&Y”(f,-t)2-*i3; (2.17) 

where s and t are related by 

(tc-t)N(SC-S)“(‘~l) (EZ 1) (2.18) 

or 

(t,-t)-e-Cs (a= 1; C=const>O). (2.19) 

By an appropriate choice of ~1, we may ensure that some, but not all, of the Eqs. 
(2.16)-(2.19) remain regular as f -+ t; . The same conclusion applies when consider- 
ing t> t,. 

The straightforward choice for g, given by Eq. (2.13), regularizes 2-body 
collisions, but still leads to badly behaved singularities in higher-order collisions. 
For triple collisions in a 3-body system, Heggie proposed the transformation 

(2.20) 

which corresponds to u = 1 (since R, - (t, - t)2’3). Thus, Eqs. (2.17) remain regular; 
however, Eq. (2.19) indicates that s + cc at collision. A generalization of (2.20) for 
simultaneous collisions of n bodies in an N-body system (n < N) 

(2.21) 
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would Iikewise impose the choice p = n(n - 1)/2 - 3. Note that this applies only to 
the Heggie scheme: for the Aarseth-Zare scheme, for which qiiv (1 d i < N - 1) are 
generalized coordinates, we must choose 

(2.22) 

with p = n - 5. This transformation was used by Aarseth [4] for the special case of 
triple collisions in a 3-body system (n = 2, p = i). If IZ < N, then more than one sub- 
system can undergo a multiple (n-fold) collision, and in each case the choice of g 
must be invariant to re-labelling of the particles. Thus, for 4-body systems, possible 
transformations are 

Heggie’s scheme: 
(i) Triple collisions 

1 1 

I 

312 

+ + 

R,z+R,,+R,, R,,+Rn+R2, 

(2.23) 

(ii) Quadruple collisions 

g= R,2R,,R,,R23R24R,,I(R12+ R,, + RI, + R,, + R24 + R,J9f2 (2.24) 

Aarseth-Zare scheme (reference body labelled “4”): 

(iii) g=R,4RxR,d(R14+ Rx+ Rd3’2. (2.25) 

It should be noted that, in the Aarseth-Zare scheme, the interparticle separations 
q&d # N, j # N) are not regularized. This suggests the following strategy for choos- 
ing the reference body in the course of numerical integration of Eqs. (2.10)-(2.12): 
find the minimum distance of separation among N( N - 1)/2 pairs of particles, and 
choose the reference body to be one of the particles defining this minimum 
separation. In the numerical results described in this paper, the reference body was 
chosen to be the particle having the smaller index in the original labelling scheme 
for the particles. A more sophisticated algorithm for resolving the ambiguity 
according to additional criteria would have entailed more frequent changes in 
reference body and re-initialization of the regularization variables (QiN, PIN), which 
was felt to be unwarranted. 

Another transformation, also involving only the R,‘s, has been discussed many 
times before (for exampie, 16, 351): 

g= l/F (2.26) 
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in which F is related to the potential energy function of the system, U, by U = -F 
(F> 0). This transformation has the advantage of possessing a first integral 

t=A 2 (pl)‘ql --s +constant 
i !=I 1 (2.27) 

so that Eq. (2.12) for dt/ds need not be integrated. 
In considering the general transformation g = g(q, p), this last example motivates 

one to examine forms of g involving the kinetic energy T as well as F: 

(2.28) 

where 1, p > 0 are constants. Again, there exists the explicit relation (cf. [37]) 

1 
t=(3,+2/4h L 

(n+p) f (pl)‘q\-s +constant. 
,=I 1 (2.29) 

The equations of motion in physical variables (qi,, pii) in terms of parametrized time 
s may easily be derived from those given in [37]: 

ff$= -g$(A-A)$ 
1, 1, 

= -g[l +pg(H-h)]E 
hi’ 

(2.30) 

(2.31) 

The corresponding equations in regularized variables (Qii, PV) can be found from 
Eqs. (2.30)-(2.31) using the KS-transformation (2.1)-(2.4) [20] 

dQ, af* ar* apii i 
ds =~=~~=~A(Qi,)~ r, r, r, r, 

‘I= ar*- dp.. af* aqil ar* ape 
ds aQ,, 8% aQli Apia aQ, 

(2.32) 

dq.. 4T.. 
=,4(Qs)~-&4(P~);++l -l&H-h)] Qij (2.33) 

rl !I 
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where the last term arises from 

1 
pii+ T,,; c c T, = T. 

1, i<, 

The case A = p = 1 gives rise to the Lagrangian time transformation 

g= l/L (2.34) 

considered by Szebehely and Zare [37], Mikkola [20, 251 (in conjunction with the 
Heggie regularization scheme), and others. It will be considered in this paper with 
both Heggie and Aarseth-Zare schemes with regularization, as well as the Aar- 
Seth-Zare scheme without regularization (cf. Eqs. (2.30))(2.31)). 

In the vicinity of a collision, the transformation (2.28) has the behaviour g- 
(t, - tp3, and hence the singularity now occurs in the equations for dp,iids 
(-(s,--s)-*) or dP,lds (m(s,---s)-I), as follows from Eqs. (2.16) and (2.17). 

Finally, from the equations of motion (2.10)-(2.11), written in the form 

c, z= -g-&(H-h)-$ 
rJ lJ 

(2.35) 

we note the appearance of Poincarre control terms [6] in the second terms of the 
right-hand sides. Along an exact solution, these terms are zero. If we generalize 
these control terms to have the form 

(H-h) Y;i, -(H-h)Z, 

then, in order that departures from the exact integral of motion H - h = 0 due to 
numerical truncation and round-off errors diminish with time, these terms must 
have the property [6] 

or, equivalently, 

~.,dQ,+y..dp, 
’ ds ” ds 

(2.36) 



SIMULATION OF SCATTERING 

The control terms in (2.35) have the form 

y. 2k. 
11 ap,' 

Z..=ag 
" aQii 

so in this case we have [37] 

i[f(H-h)‘]= -(H-h$S. 

205 

(2.37) 

(2.38) 

Therefore, stabilization of the integral H - h = 0 can only occur when g is increas- 
ing along the solution path. This condition is satisfied for the Lagrangian time 
transformation (2.34) only while L is decreasing, following a close encounter. 
Regardless of the functional form of g, a given method may be stabilized by means 
of the simple device introduced by Zare and Szebehely [37] of using the control 
terms (2.37) but reversing the sign on each whenever g was found to be decreasing. 
It is clear that exactly the same considerations apply to the general equations using 
the time transformation without regularization, as in Eqs. (2.30) and (2.31). 

3. NUMERICAL TESTS OF PROPOSED METHODS 

In order to test the performance of the methods described in Section 2, the stan- 
dard techniques of (i) time-reversal tests on critical many-body close encounters 
[S, lo] and (ii) comparison with known analytic solutions [37] were used. A 
further test for consistency between different methods is to integrate through a 
resonance scattering event and compare the outcomes, using the same initial con- 
ditions for each method. The first two techniques are described below, and results 
of numerical tests are presented; the third technique is discussed in Section 4. 

In order to establish notation, the following conventions are used: 

1. Aarseth-Zare type methods (with KS-regularisation) are denoted by “AZ”; 
Heggie type methods by “H.” If regularisation is not used, there is an additional 
qualifier “C.” 

2. Methods which use time transformations involving the interparticle 
separations only are specified by “R”; while “I”’ denotes the “product” transfor- 
mation (2.13). The letter “T” denotes the transformation (2.23) which attempts to 
smooth triple collisions, 

3. The letters “L” and “U” specify time transformations involving the 
Lagrangian and potential energy functions, respectively. 

4. The letter “S” specifies that the method has been energy-stabilized using 
the Zare-Szebehely technique (Section 2). 

5. A numerical “n” indicates that the method is specific to a system of n 
bodies. 
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TABLE I 

Methods for Numerical Integration of the Gravitational N-Body Problem 

Method Equation 
in text 

No. of 
equations 

Method Equation 
in text 

No. of 
equations 

HR, HRS 
HL, HLS 

HRP, HRPS 
HRT4 
c4* 

(2.21) 4N(N-l)+l AZR, AZRS (2.22) 8(N-l)+l 
(2.34) 4N(N- 1) AZL, AZLS (2.34) 8(N- 1) 
(2.13) 4N(N- l)+ 1 AZRP, AZRPS (2.13) 8(N- l)+ 1 
(2.23) 49 AZU (2.26) 8(N- 1) 

(‘Y’l) 24 AZCL* (2.34) 8(N- 1) 

Note. Methods listed were tested using (i) time reversal of a critical many-body encounter, (ii) com- 
parison with analytic solution, and (iii) integration through a resonance scattering event. Tests included 
both the 3- and 4-body systems. See text for explanation of the notation. All methods except those 
marked with an asterisk employ KS-regularization. 

Thus, for example, AZLS denotes an Aarseth-Zare-type method (with KS- 
regularization) using a Lagrangian time transformation and stabilization. The 
methods that were tested are listed in Table I. 

To allow for the possibility of frequent step-size changes during integrations, a 
Runge-Kutta integrator of eight-order due to Fehlberg [7] was used. This 
integrator provides an estimate of the absolute truncation error E, measured as the 
maximum component of the error vector output after each step. This error was 
used to define the new time step in terms of the old one according to 

As,,, = (11/4~‘~A~o,d (3.1) 

where 9 is the absolute error tolerance specified as input to the program. 
A useful quantity that is easy to compute and allows one to follow some of the 

qualitative features of the dynamics is the total perimeter of the system, defined as 

u=CCRij (3.2) 
I</ 

where the sum extends over all particle pairs. This definition of “perimeter” is dif- 
ferent to the one used in [ 141, but for regularized schemes is more convenient since 
it avoids the computation of square roots (see Eq. (2.3)). 

At this stage, a number of important points should be emphasized. Numerical 
comparisons between different methods cannot unambiguously establish any 
method as being superior to another. The performance of a given method depends 
at least on the following factors: 

(a) The type of test applied; 
(b) The type of numerical differential equation solver used; 
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(c ) The size of the error tolerances specified, and-perhaps more significantly 
-the manner in which the error at each integration step is both estimated and con- 
trolled. Often, as in [14], the error which is controlled is the deviation of total 
energy, and the step-size is estimated from consideration of the dynamics of the 
system. Since the integrator used in the present paper provides an estimate of the 
local truncation error, this was preferred as a means of step-size control (Eq. (3.1.)). 

(d) A further complication arises from the nature of the N-body problem 
itself, which is “unstable” in the sense of exhibiting sensitivity to initial conditions. 
The consequences of this for numerical integrations are well known [17, 261, and 
will be discussed later. 

3.1. Time Reversal Tests on Close Many-Body Encounters 

Time-reversal tests were carried out on both 3- and 4-body systems. Although the 
former have been investigated before [S, lo], these tests included only a subset of 
the present methods, and a uniform comparison of all these methods is justified. 

Triple encounters in a 3-body system were generated from an initial configuration 
consisting of a distorted equilateral triangle with particles of unit mass located at 
rest at the positions (&- 1 -+6x, -lit/;) and (6x, 2/,/?). The system was 
integrated forward in time until a binary was formed with orbital semi-major axis a 
and eccentricity e, such that the nearest particle to the binary was at a distance 
>20a. At this time t = Tf, the velocities of the particles were reversed, and the 
system integrated forward for a length of time Tf, after which the initial and final 
configurations were compared. For methods in which t appears as a dependent 
variable, it was necessary to iterate the solution until t = T,. The magnitude of the 
residuals between initial and final position is defined as the maximum difference 
over all coordinates and all particles, and is given in Table III for two initial con- 
figurations. The smaller the 6x in the initial configuration, the smaller will be the 
minimum perimeter of the 3-body system and thus the more stringent the test. This 
minimum perimeter a(min) and the binary orbital parameters a and e agreed 
among the different methods to at least 4 significant figures, and are given in 
Table II. 

TABLE II 

3-Body Time-Reversal Tests 

Configuration 6X a e cr(min) a(min)/a 

Tl 1.0 (-4) 0.4504 (-3) 0.6180 0.1322 (-2) 2.935 
T2 I.O(-6) 0.8255 ( - 5) 0.6171 0.2423 (-4) 2.935 

Note. Particles of unit mass are started from rest at the vertices of a distorted equilateral triangle, 
where Sx is the distortion (see text). The system evolves through a close triple encounter, as a result of 
which a binary forms with orbital semi-major axis a and eccentricity e. a(min) is the smallest perimeter 
of the system during the close encounter. 
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TABLE 111 

Time-Reversal Tests on a Close 3-Body Encounter: 
Initial Configurations Tl and T2 Defined in Table II 

Configuration Tl Congiguration T2 

AE No. of steps AX AE No. of steps 

HRS 0.11 (-6) 0.12 (-4) 215 0.13 (-5) 0.13 (-2) 233 
HR 0.33 (-8) 0.31 (-5) 125 0.88 (-6) 0.22 (-2) 134 
AZRS 0.33 (-7) 0.68 (-7) 230 
AZR 0.45 (-8) 0.57 (-6) 144 
HRPS 0.39 (-8) 0.69 (-6) 267 
HRP 0.53 (-6) 0.27 ( 0) 214 
AZRPS 0.14 (-7) 0.29 (-7) 262 
AZRP 0.17 (-6) 0.43 (-4) 183 
HLS 0.49 (-8) 0.18 (-6) 218 
HL 0.27 (-8) 0.70 (-6) 151 

0.44 (-6) 0.82 ( 
0.38 (-7) 0.70 
0.15 (-6) 0.99 
0.42 (-3) 0.45 
0.18 (-6) 0.48 
0.12(-3) 0.13 
0.42 (-6) 0.56 
0.71 (-6) 0.17 

-5) 249 
-4) 155 
-3) 299 
+5) 247 
-5) 287 

0) 202 
-3) 235 
-2) 156 

AZLS 0.25 (-8) 0.98 (-8) 229 0.35 (-7) 0.25 (-5) 245 
AZL 0.11 (-8) 0.23 (-6) 161 0.15 (-7) 0.13 (-4) 168 
AZCL 0.11 (-9) 0.11 (-8) 521 0.19 (-9) 0.70 (-8) 707 

Note. The integrations are reversed at time I = Tr when the nearest particle IO the binary formed by 
the close encounter is at a distance >20a, where a is the orbital semi-major axis of the binary. The 
maximum of the residuals in final position (among the 3 components of all particles) is Ax, and the size 
of maximum deviation of total energy, during integrations, from constant (initial) value is AE. The error 
tolerance for each method is lo- ‘*. The number of steps required to reach f = Tr is given. All integrations 
were carried out on a FPS-164, which has 15 decimal place accurate floating point arithmetic. 

From Table III, it can be seen that for each method, introducing energy- 
stabilization does indeed reduce the maximum deviation of the total energy from its 
constant (initial) value. However, in the case of the “optimal” methods HR and 
AZR, stabilization actually leads to larger residuals in position. Furthermore, 
stabilized methods seem to require more steps (at slightly extra cost per step) than 
their non-stabilized counterparts. The non-regularized method AZCL appears to 
require more than twice as many steps as the least efficient of the regularized 
methods, with this ratio being larger for the more critical encounter T2. For the 
same absolute error tolerances as the regularized methods, AZCL also gives the 
smallest residuals in position and total energy. Finally, note that the perimeter of 
the 3-body system is close to 3a for both sets of initial conditions. This well-known 
result was also found by numerical tests in [5], and is a consequence of Sundman’s 
inequality [33]. 

The initial conditions for time-reversal tests on 4-body encounters were chosen 
to be the vertices of a distorted regular tetrahedron, with particles of unit mass 
located at rest at the positions (54, -l/2*& 6y, -l/23- &), (0, l/d, 
-l/2$-- 6z), and (0, 0, d/2$!+ 362). As in the 3-body case, a close binary 
forms during the critical encounter, and the forward integrations were stopped 
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TABLE IV 

4-Body Time-Reversal Tests 

Configuration 6y 62 (1 e o(min) o”‘(min) oc3)(min)/a 

QTl 1. (-3) 0.2 0.3290 
QT2 1. (-4) 0.2 0.4465 
QT3 I. (-6) 0.2 0.8185 

$ 
l.(-3) 5.(-3) 0.2674 
l.(-3) l.(-3) 0.2703 
1. (-4) 1. (-4) 0.3625 
1. (-5) 1. (-5) 0.4864 

-2) 0.6308 
-3) 0.6180 
-5) 0.6159 

-2) 0.5808 0.182 
-2) 0.3762 0.479 
-3) 0.3487 0.644 
-4) 0.3380 0.869 

0.973 (-2) 2.96 
0.131 (-2) 2.93 
0.241 (-4) 2.94 

0) 0.775 (-2) 2.90 
-1) 0.742(-2) 2.75 
-2) 0.962 (-3) 2.65 
-3) 0.127 (-3) 2.61 

Q5 l.(-7) l.(-7) 0.8812(-6) 0.3294 0.159(-4) 0.288(-5) 2.59 

Note. The particles, of unit mass, are started from rest at the vertices of a distorted regular 
tetrahedron, where by, 6z are the distortions (see text). The system evolves through a close triple or 
quadruple encounter (for initial configurations “QTn” and “Qn,” respectively). A binary forms with 
orbital semi-major axis a and eccentricity e. u(min) is the minimum perimeter of the total system, 
u’3’(min) that of the smallest 3-body subsystem, during the close encounter. 

when the nearest particle to the binary was at a distance > 100~. By choosing the 
initial conditions so that 16~1 and 16~1 are of the same order of magnitude, a critical 
4-body close encounter can be simulated; while if 16~1% 16~1, then a critical 3-body 
encounter occurs. In the former case, the minimum total perimeter a(min), as well 
as the minimum perimeter at3)(min) formed from the closest 3-particle subsystem, is 
of interest; in the latter case, only ac3’(min) has significance. 

Several configurations, defined by different sets of (6y, 6~) values, were 
integrated, and the binary and minimum perimeters characteristic of each method 
are given in Table IV. Again, agreement in these values to at least 4 significant 
digits was found for all methods. Results of the integrations for each of the methods 
are given in Tables V and VI only for the 3 most critical cases. In some instances, a 
method would “fail,” in the sense of requiring more than 5 minutes of FPS-164 
CPU time and of showing large residuals of total energy in the course of 
integration. For example, for the initial conditions of Table V, leading to a close 
triple encounter in the 4-body system, the method HRT4 (Eq. (2.23)), which is 
designed to handle 3-body close encounters in an “optimal” way, gave smaller 
residuals than either HR and HRS (Eq. (2.24)) which are optimal for close 4-body 
encounters. Conversely, HRT4 failed, whereas HR and HRS succeeded, in the two 
most critical 4-body encounters given in Table VI. This example alone demonstrates 
the effectiveness of employing “optimal” time transformations, in terms of requiring 
fewer steps to achieve a given accuracy. It also demonstrates a drawback of the 
class of time transformations based only on the RGs and represented by Eqs. (2.13), 
(2.23), and (2.24): whether or not the transformation is optimal depends on the 
number of bodies involved in the close encounter. Furthermore, methods which are 
not optimal for a given type of close encounter (including AZRP and HRP, which 
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TABLE V 

Time-Reversal Tests on a Close Triple Encounter in a 4-Body System: 
Initial Configuration QT3 Defined in Table IV 

Method Ax 

HRT4 0.87 (-7) 
HRS 0.65 (-5) 
HR 0.43 ( 0) 
AZRS 0.52 (-5) 
AZR 0.64-4) 
HRPS 0.81 (-5) 
HRP * 

AZRPS 0.49 ( - 5) 
AZRP 0.37 (-3) 
HLS 0.13 (-4) 
HL 0.60-3) 
AZLS 0.43 (-6) 
AZL 0.21 (-5) 
AZU 0.44-3) 
AZCL O.lO(-8) 
C 0.13 (-6) 

AE 

0.22 ( 0) 
0.21 (+5) 
0.14(-3) 
0.12 ( 0) 
0.16 ( 0) 

* 

0.60 (-4) 
0.13(+1) 
0.17 ( 0) 
0.13(+1) 
0.60 (-5) 
0.27 (-3) 

0.63 (-7) 

No. of steps 

335 
594 
396 
558 
339 
599 
* 

570 
354 
597 
420 
595 
414 
324 

1750 
2069 

Note. The integrations are reversed at time t = Tr, when the nearest particle to the binary formed in 
the close encounter is at a distance > lOOa, where a is the orbital semi-major axis of the binary. The 
maximum of the residuals in the final position (among the 3 components of all particles) is denoted by 
Ax, and the size of maximum deviation of the total energy from constant (initial) value is denoted by 
dE. The error tolerance for each method is 10 ii. The number of steps required to reach Tr is given. If a 
method failed to converge after 5 minutes of processing time, this is denoted by an asterisk. All 
integrations were carried out on a FPS-164, which has 15 decimal places of accuracy of floating point 
arithmetic. 

are optimal (regular) only for 2-body encounters) show a definite improvement in 
accuracy of final position when energy-stabilization is introduced. In many cases, a 
stabilized version would converge, whereas its non-stabilized counterpart would 
fail. The effectiveness of stabilization in optimal methods is not as clear, as has been 
found by others (for example, [4] for the 3-body case). 

Integration of the classical equations (method C4) appears to offer no advantage 
in accuracy or efficiency, even compared to AZCL. 

It is evident from an examination of Tables V and VI that methods based on the 
Lagrangian time transformation, Eq. (2.34), possess the best advantages of accuracy 
and efficiency. As noted earlier, the behaviour of these methods near multiple 
collisions is independent of the number of bodies involved in the collision. When 
comparing the different methods based on the Lagrangian time transformation, it is 
interesting to note that the Aarseth-Zare-type schemes appear to exhibit smaller 
residuals than those based on the Heggie-type scheme. This is true of both the 3- 
and 4-body cases tested. The two schemes require comparable numbers of steps for 
a given initial donfiguration, but the Aarseth-Zare schemes have fewer equations 
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than the Heggie schemes, and are therefore less costly to use. When considering the 
non-regularized method AZCL, twice as many steps were required than the KS- 
regularized counterpart AZL, though for the same absolute error tolerance greater 
accuracy was achieved. However, it was found that, by increasing the error 
tolerance until the residuals in final position given by AZCL were the same as those 
produced by AZL for a smaller error tolerance, the two methods required about the 
same numbers of steps. 

The advantages of introducing energy-stabilization into methods employing the 
Lagrangian time transformation are not as clear as they were for the “non-optimal” 
methods using time transformations based on the R,'s only. However, some 
improvement was found in all cases considered, in terms of the residuals in both 
total energy and final position. 

Finally, as in the 3-body case, there seems to exist a close correlation between the 
orbital semi-major axis of the binary formed in a close encounter and the minimum 
perimeter oc3’(min) defined above: the ratio o(3)(min)/u is slightly less than 3 for all 
initial configurations considered (whether a 3- or a 4-body close encounter was 
being simulated). This ratio, as well as the values of u and e, decreases slowly as the 
size of the perturbations 6y, 6z in the initial configuration decreases. Even in close 
4-body encounters (Table VI), we have a(min) & ac3’(min): this seems to suggest 
that the binary is formed through 3-body, rather than 4-body, interactions. 

TABLE VI 

Time-Reversal Tests on a Close 4-Body Encounter: 
Initial Configurations Q4 and Q5 Delined in Table IV 

Method Configuration Q4 Conliguration Q5 

AX AE No. of steps Ax AE No. of steps 

HRT4 * * * * * * 

HRS 0.39 (-5) 0.27 ( - I ) 1054 0.46 (-5) 0.56 ( - 1) 1816 
HR 0.42 (-5) 0.23 (-2) 671 0.16 (-3) 0.94 ( - 1) 1155 
AZRS 0.77 (-5) 0.54 (-5) 995 0.26 (-6) 0.13 (-5) 1755 
AZR 0.11 (-5) 0.15 (-3) 641 0.67 (-7) 0.16 (-3) Ill0 
HRPS 0.90 (-5) 0.23 ( - I ) II22 0.78 (-5) 0.11 ( 0) 1991 
HRP * * * * * * 
AZRPS 0.73 (-5) 0.65 (-5) 3866 * * * 
AZRP 0.98 (-2) 0.32 (+3) 3593 * * * 

HLS 0.28 (-6) 1150 0.51 (-6) 0.58(-l) 1957 
HL 0.36 (-5) 0.62 (-3) 923 0.36(-5) 0.31 (-1) 1509 
AZLS 0.17 (-6) 0.95 (-5) 1151 0.24 (-7) 0.11 (-5) 1929 
AZL 0.19 (-5) 0.99 (-4) 875 0.22 (-6) 0.50 (-4) 1432 
AZU 0.12 ( 0) 630 * * * 

AZCL 0.55 (-5) 0.44 (-3) 1240 O.lO(-7) 0.63 (-6) 6386 
C 0.13 (-6) 2995 0.15 (-7) 6630 

Note. See Table V for explanation of notation. Error tolerance is IO-” for Q4 and IO-” for QS. 
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3.2. Comparison with Analytic Solutions 

For the 3- and 4-body problems, a variety of configurations exist in which the 
symmetry is preserved with time. For example, in the 3-body case, there is the 
equilateral triangle solution of Lagrange, in which each particle executes a 
Keplerian orbit of semi-major axis a and eccentricity e about the common centre- 
of-mass, when viewed in a uniformly rotating reference frame with rotation period 
P = 27r/Q [8, 371. The initial conditions were chosen with the particles at the apap- 
ses of their orbits, with a = l/J?, which is equivalent to an equilateral triangle with 
sides of length (1 + e). The particle masses and gravitational constant were chosen 
to be 1, so the value of Sz is then 3. 

Similarly, the planar 4-body problem with equal masses possesses an invariant 
square-symmetric configuration, in which individual particles move in Keplerian 
orbits about the common centre-of-mass. The initial conditions were again chosen 
with the particles located at the apapses of their orbits, forming a square con- 
figuration with sides of length d( 1 + e). The orbital period (when all masses are 1) 
is then given by P = 271/G?, where Q2 = (2fi + 1)/4, and a = 1. 

In both the 3- and 4-body problems, the integrations were carried out for two 
orbital periods P, with eccentricities e = 0 and e = 0.95, and the final positions and 
velocities compared with their initial values. As was the case with the time-reversal 
tests, for methods in which t appeared as dependent variable, it was necessary to 
approach the final value t = 2P by iteration. The results are shown in Tables VII 
and VIII for 8 different methods: stabilization was included only for the “product 
transformation” methods (cf. Eq. (2.13)) which showed marked improvement over 
their non-stabilized counterparts in the time-reversal tests of Section 3.1 above. 

TABLE VII 

Comparison with Analytic Solutions: Residuals in Position (dx) and Velocity (da) after 
Two Orbital Periods for the Lagrange Equilateral Triangle Solution of the 3-Body Problem 

Method e=o e = 0.95 

No. of steps Ax Al; No. of steps AX AU 

HR 44 0.35 (- 10) 0.56 
AZR 49 0.21 (- 10) 0.31 
HRPS 84 0.11 ( -9) 0.2 1 
AZRPS 48 0.24 ( -9) 0.40 
HL 53 0.18 (-10) 0.29 
AZL 60 O.ll(-IO) 0.19 

-10) 80 0.35 
- 10) 84 0.48 

-9) 185 0.19 
-9) 92 0.11 

-10) 85 0.11 
-10) 93 0.25 

-8) 0.57 
-8) 0.79 
-8) 0.14 
-7) 0.30 
-8) 0.97 
-8) 0.33 

-8) 
-8) 
-8) 
-7) 
-9) 
-8) 

AZU 52 0.16 (- 10) 0.28 (-10) 87 0.28 (-8) 0.20 (-8) 
AZCL 83 0.46(-10) 0.11 ( -9) 161 0.20 (-8) 0.14 (-8) 

Note. All masses are unity; period P = 2x/\/5; a = l/J?. Absolute error tolerance in the integrations 
is lo-“. Only the “product transformations” (cf. Eq. (2.13)) were stabilized, as the time-reversal tests 
(Tables V and VI) indicated that the methods were significantly improved compared to their non- 
stabilized counterparts. 
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TABLE VIII 

Comparison with Analytic Solutions: Residuals in Position (dx) and velocity (du) after 
Two Orbital Periods for the Planar Square-Symmetric Solution of the 4-Body 

Problem with Equal (Unit) Masses 

Method e=O e =0.95 

No. of steps Ax Au No. of steps Ax Au 

HR 41 0.52(- 10) 0.45 (-10) 83 0.21 (-7) 0.99 (-8) 
AZR 53 0.19(-10) 0.16(-10) 91 0.27 (-7) 0.13 (-7) 
HRPS 111 0.24( -9) 0.16( -9) 289 0.16 (-7) 0.70(-8) 
AZRPS 63 0.11 ( -9) O.lO( -9) 140 0.43 (-7) 0.30(-7) 
HL 53 0.28(-10) 0.24(- 10) 85 0.53 (-8) 0.27 (-8) 
AZL 62 0.16(-10) 0.14(-10) 98 0.27 (-7) 0.12 (-7) 
AZU 57 0.20(-10) O.lS(-10) 96 0.31 (-7) 0.14 (-7) 
AZCL 86 0.52(-10) 0.45(-10) 145 0.22 (-7) 0.83 (-8) 

Note. Period P= 2%/Q, where 52’ = (2& + 1)/4, a = 1. Absolute error tolerance in the integrations is 
IO-“. Only the “product transformations” (cf. Eq. (2.13)) were stabilized, as the time-reversal tests 
(TablesV and VI) indicated that the methods were significantly improved compared to their non- 
stabilized counterparts. 

From these tables, it appears that Lagrangian time-smoothing applied to both 
Heggie and Aarseth-Zare methods with regularisation (HL, AZL) gives the best 
results, with the former showing appreciably higher accuracy than the latter for the 
e = 0.95 cases. The methods employing the “product transformation” (2.13) dis- 
played both the least accuracy and the highest number of integration steps. The 
advantage of regularized over non-regularized methods is evident even for the 
mildly critical encounters occuring in this test, when one compares HL and AZL 
for the e=0.95 case with AZCL. 

4. 3- AND ~-BODY SCATTERING EXPERIMENTS 

In this section, a computer program will be described for studying binary-single 
star or binary-binary scattering. Similar programs have recently been developed by 
Hut and Bahcall [14, 151 in their study of 3-body scattering and by Mikkola 
[21-24,253 in a study of 4-body scattering, though in each case different criteria 
were used to decide when to terminate integrations due to one or other type of scat- 
tering outcome occurring. As far as the present paper is concerned, such a program 
is useful in providing yet another test of the various methods proposed in Section 2 
above for integrating through close encounters involving 2 or more bodies. 

Experiments on scattering involving hard binaries provide a useful test of any 
scheme for numerically integrating an orbit, because of the frequent occurrence of 
resonances. They also highlight fundamental difficulties associated with long-term 
integrations of N-body problems [ 17, 261. Therefore, experiments were carried out 
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with hardness parameter x having the values lo2 and 104, where x is defined as the 
ratio of total binding energy of the binary or binaries to the kinetic energy of 
relative motion of the binary + single star (3-body case) or binary + binary (Cbody 
case) before scattering. Also, the masses of all stars were chosen to be unity, and the 
initial binary orbit(s) to have semi-major axis of unity and eccentricity of zero. The 
gravitational constant was chosen to be unity. The impact parameter for the scat- 
tering (measured with respect to the centre-of-mass of the binary or binaries) was 
set at p = 0.01. In each of the 3- and 4-body cases, the same initial conditions were 
used for all methods tested, though in a statistical study of many scattering 
experiments different initial conditions could be generated by the program by sam- 
pling the incoming scattering angles and orientation and phases of the binary 
orbit(s) from the appropriate distributions [ 141. 

The initial conditions for a 3-body scattering experiment were defined in the same 
way as in [ 14, Fig. 11. Initial conditions for binary-binary scattering were defined 
in an analogous way, except now four more angles need to be specified and ran- 
domly chosen from the appropriate distributions. These are the inclination; 
longitude of ascending node; argument of periastron of the second binary referred 
to axes through the centre-of-mass of the first binary, with x-axis along the direc- 
tion of periastron and the xy-plane coinciding with the orbital plane; and the 
orbital phase of the second binary at periapsis of the unperturbed hyperbolic 
relative orbit of the two binaries. This approach is a convenient one for generating 
a reproducible sequence of initial conditions, when running large numbers of 
experiments for obtaining scattering cross sections in 3- and 4-body system. 

For a particular set of initial conditions, the 3- or 4-body system was integrated 
until a definite outcome was obtained. For the 3-body case, the number of possible 
outcomes is small: ionization, fly-by, exchange of the incoming particle with one of 
the binary components, or a hierarchical triplet. In the first case, all 3 particles 
eventually escape to infinity; in the second the original binary remains intact; in the 
third, a binary is also left behind but with different components. In binary-binary 
scattering, several more possibilities exist: ionization, two binaries remaining intact 
(with or without their original components), or only one of the binaries remaining 
intact. Also, hierarchical triplets or quadruplets may form, which are in principle 
unstable, but may survive an indefinitely long time before breaking up into one of 
the stable conligurations mentioned above. Therefore, an upper limit must be set to 
the number of oscillations of the perimeter cr during a given orbit integration, as 
was done in [ 141. Alternatively, an upper limit to the total physical time t, in terms 
of a fixed number of orbital periods of the initial binary, could be set. 

The criteria chosen for terminating hierarchical configuration integrations were 
different for 3- and 4-body systems. For a 3-body system, Zare’s criterion [34, 363 
was used. A critical value (c2H),, (c = total angular momentum, H= total energy) 
was computed from the collinear central conliguration and compared with the 
actual value of c*H: if this was greater than the critical value, integrations were ter- 
minated with the outcome of a stable hierarchy. This criterion is equivalent to a 
lower bound on the ratio of the semi-major axes of the outer to the inner binary, 
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though this ratio depends senstively on the orbital eccentricities when they are close 
to unity (as is often the case in scattering). Note that Zare’s criterion is strictly 
applicable only if the two binary orbits are coplanar. For the 4-body hierarchical 
system, consisting of either 3 hierarchical binaries or two binaries in wide (bound) 
orbit about each other, a simpler criterion was used: if the perturbation acceleration 
of one orbit on another was less than 10e4 of the two-body acceleration, the system 
was regarded as hierarchically stable and the integrations stopped. This is also the 
criterion used by Mikkola [21]. However, several hundred preliminary runs at 
various impact parameters indicate that, for hard binaries at least, such 4-body 
hierarchical configurations are much less likely to occur than 3-body ones. 

The number of successive maxima and minima of (T before an outcome is 
established indicates the degree of complexity of the resonance scattering. Often, 
this number is several hundreds or thousands, requiring of the order of lo4 
integration steps, depending on the method used. 

A well-established feature of binary-binary scattering [29] is that in most cases 
the system would go unstable by ejecting one particle, rather than ejecting a bound 
binary system. Thus, a strongly interacting 3-body subsystem would be left behind, 
which in turn would eventually go unstable. Therefore, the subroutines for a 3-body 
system were incorporated in the 4-body program. The criteria used for escape were 
(i) the distance between the outermost particle and the centre-of-mass of the 3-body 
subsystem was increasing and (ii) the energy of the Keplerian orbit of this particle 
(call it “4”) about the centre-of-mass of the other three exceeds a positive threshold 
defined as the tidal perturbation energy IElldI of the inner 3 particles on the outer 
particle: 

-% = GM4 !yL+- (ml +m,+m,) 
14 R24 34 R (4.1) 

where i? denotes the distance to the centre-of-mass of particles 1, 2, 3. Once both 
these criteria were found to be satisfied, the integrations were continued for another 
20 steps and the criteria re-checked. If still satisfied, the particle was deemed to have 
escaped. Similar criteria were applied to decide the escape of stars from a 3-body 
system, and of binaries from a 4-body system. It should be noted that, in the 3-body 
case, several alternative, sufficient conditions for escape exist: for example, see [31]. 
These could, in principle, be adapted to the 4-body case to obtain a less rigorous 
but still practical criterion if a hard binary is present and may be treated as a single 
particle. 

In a 3-body system, in which a close and wide binary form, in many cases the 
eccentricity of the wide orbit is close to unity, so that at periapsis the particle in 
wide orbit undergoes a strong interaction with the close pair. However, since most 
of its time is spent at large distances from the close pair, a 2-body approximation is 
justified. Therefore, when the separation exceeds 60 times the orbital semi-major 
axis of the close pair, and this separation is increasing, the 2-body approximation is 
invoked to compute the orbital phase of the close binary when the outer particle 
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returns to the same distance after having passed through the apapsis of its orbit. No 
perturbation treatment is used, as is done in Mikkola’s code [21]. 

In the scattering experiments the incoming particle in binary-single star scattering 
is labelled “3”, and the components of the initial binaries in binary-binary scattering 
are labelled (1,2) and (3,4). The asymptotic relative velocity before scattering u, is 
conveniently measured in terms of the critical velocity v, for which the total energy 
of the system is zero. For the binary-single star case, 

vz = mlm2(ml +m2+m3) 
m3(ml + m2) a 

and for the binary-binary case 

U2=(ml+m2+m3+m4) mlm2+m3m4 
i 
- - 

’ (ml+m2)(m3+m4) a, a, I 
(4.3) 

where a, a,, and a, are the orbital semi-major axes. For both 3- and 4-body 
systems, the hardness parameter x, defined in Section 3, is related to u, and u, by 

x = (u,/u,) 2. (4.4) 

The results of applying several methods to a binary-single star scattering 
experiment with initial binary hardness x = lo4 and fixed initial conditions are given 
in Table IX. This scattering experiment is not of long duration (-9 orbital periods 
of the initial binary) and not a particularly severe test of the methods. The identity 
of the escaping particle agrees among all the methods, and the orbital charac- 

TABLE IX 

Scattering of a Binary and a Single Star, with Impact Parameter p = 0.01, 
Binary Hardness Parameter x = IO4 

Method n No. of 
oscillations 

No. of steps AE Final binary 

HR I I 
AZR 1 I 
HL I 21 
AZL I 17 
AZU 1 5 
AZCL I 5 

280 0.96(-8) 0.543 0.976 
280 0.46 (-9) 0.543 0.916 
300 0.17 (-8) 0.543 0.977 
280 0.14 (-9) 0.543 0.977 
140 0.18 (-9) 0.543 0.975 
320 0.38 (-8) 0.543 0.970 

Nore. Initial binary has u = I, e = 0; all masses are unity. The initial separation of the binary from the 
incoming single star is 200. As a result of the scattering, particle “n” escapes, leaving behind a binary. If 
n = 3, the original binary remains intact; if n = 1 or 2, exchange has taken place. Number of oscillations 
is the number of oscillations of the perimeter of the 3-body system; AE is the maximum deviation of total 
energy from constant (initial) value during the integrations. 
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TABLE X 

Scattering of a Binary and a Binary, with Impact Parameter p = 0.01, 
Binary Hardness Parameter x = lo2 

Method n, n No. of No. of steps AE Final Binary 
oscillations 

3 4 3 4 3 4 a P 

HR 12100 1 1040 loo 0.13 (-2) 0.95 (- 10) 0.28 1 0.628 
AZR 03 57 1 700 160 0.12 (-8) 0.28 ( -9) 0.260 0.644 
HRPS 02 37 1 860 160 0.46(-8) 0.12 ( -8) 0.106 0.750 
AZRPS 03 81 I 1300 180 0.68 (-9) 0.12 ( -8) 0.214 0.405 
HL 22 45 3 520 140 0.12 (-3) 0.36 ( -8) 0.257 0.969 
AZL 11119 3 1380 200 0.13 (-4) 0.47 ( -9) 0.265 0.605 
AZU 2 1 98 3 1180 200 0.27 (-3) 0.49 ( -9) 0.263 0.695 
AZCL 3 1 352 1 10460 180 0.43 (-3) 0.23 ( -8) 0.25 1 0.935 

Note. Initial binaries have u = 1, e = 0; all masses are unity. The initial separation of the two binaries 
from each other is lOa. As a result of the scattering, particle “4” escapes, leaving behind a 3-body system 
which eventually decays into a binary and escaping particle ‘W’; if n = 3, one of the original binaries 
remains intact; if n = 1 or 2, exchange has taken place. AE is the maximum deviation of total energy 
from constant (initial) value during the 4-body integrations. nz is the number of times the 2-body 
approximation was called during the 3-body integrations: the relatively large deviations in the total 
energy of the 3-body system arise from this approximation, which was invoked whenever the distance of 
the particle in wide orbit was greater than 60 times the separation of the inner pair. 

teristics of the final binary are approximately the same. However, the number of 
oscillations of the perimeter differ widely. 

For the binary-binary scattering experiment (Table X), in which x = 102, the 
identity of the first escaper is the same in each case, though the number of 
oscillations of the 4-body perimeter differ. However, the identity of the second 
escaper does not agree among the different methods, and there is not as close 
agreement regarding the orbital characteristics of the final binary as in the case of 
binary-single star scattering. This is in part due to phase errors introduced by 
invoking the 2-body approximation; however, as Table X shows, the 2-body 
approximation is called different numbers of times for different methods. Even for 
those methods which do not invoke the approximation, different second escapers 
are produced. Furthermore, the durations of physical time of scattering show a 
wide variation: in general, methods which require more oscillations in D also 
produced a larger value of the final t. 

Runs with several initial conditions in both 3- and 4-body scattering runs clearly 
show that, whenever strong resonances occur, in which CJ undergoes thousands of 
oscillations, the outcomes can vary with method and with the error tolerance 
specified for a given method-even when the 2-body approximation is not 
introduced. On the other hand, if only a few oscillations occur, and the scattering is 
of short duration, the outcomes agree. This highlights the fundamental difficulty 
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associated with numerical integrations of N-body gravitational systems: small per- 
turbations-whether due to different error propagation in different integration 
schemes, or to different tolerances being specified for a given scheme-can lead to 
widely separated orbits. The divergence is even greater for binary-binary scattering 
than for binary-single star scattering. This is due partly to the artifact of isolating 
the 3-body subsystem from the escaping star. This in general will occur at different 
parts of the orbit for different integration schemes, because the test for isolating the 
3-body subsystem is applied only after every 20 steps and step-sizes will differ from 
one method to another. Hence, the perturbations which are caused by the neglect of 
the potential field of the escaping star, though small, are not zero, and sensitivity to 
these small perturbations will cause the orbits to diverge by amounts which increase 
as the duration of the scattering increases. 

5. DISCUSSION 

The scattering experiments discussed in Section 4 serve to illustrate the inherent 
instability of the gravitational N-body problem, even when N is as small as 3 or 4. 
The divergence in phase space of neighboring orbits over long periods of time can 
lead to widely varying outcomes as to the identity and kinetic energy of the escap- 
ing star, as has been shown by the numerical experiments of Lecar [ 171 and Miller 
[26]. The best that can be hoped is for those N-body orbits which undergo large 
numbers of oscillations in cr to till the asymptotic regions of phase space (occupied 
by the different categories of scattering outcomes) with a good approximation to 
the correct distribution, when a large number of experiments are performed. 

Comparison of the methods proposed in this paper with analytic solutions and 
by means of time-reversal tests point to the superiority of methods based on the 
Lagrangian time transformation, which combines the advantages of accuracy, 
efficiency, and independence of performance on the number of bodies involved in a 
particular many-body close encounter. There appears to be no advantage in 
accuracy or fewer numbers of steps required for the Heggie scheme, which was used 
by Mikkola [20,21], compared with the Aarseth-Zare scheme. In fact, the fewer 
numbers of equations associated with the latter result in their being less expensive 
to use than the Heggie-type schemes. Of course, only one criterion was tested for 
choosing the reference body in the Aarseth-Zare schemes: others should be tried, 
particularly when the particle masses are different. 
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